Multi-Criteria Analysis of the Synergy Between Data Governance and Data-Driven Governance: A Comparative Framework for Designing Intelligent Organizations

Document Type : reserch

Authors

1 Security expert at the Fisheries Organization, lecturer at the University of Applied Sciences.

2 Deputy for Cyber Security, Ministry of Roads and Urban Development- PhD student in Cyberspace Security from the National Defense University

Abstract

In the era of digital transformation, organizations aiming for optimal performance, informational agility, and sustainable competitive advantage require integrated approaches to data management—approaches that ensure data quality, security, and compliance, while also enabling evidence-based analytical decision-making. In this context, the two approaches of data governance and data-driven governance emerge as foundational pillars of organizational data management and the backbone of intelligent information architecture. This study conducts a comparative analysis of these two approaches, examining their conceptual, structural, cultural, and strategic dimensions. It seeks to offer a theoretical and practical response to the organizational need for balancing control and value creation from data through an integrative modeling framework. The research follows an analytical-applied methodology using a mixed-method approach. Initially, key comparative criteria were identified through document analysis. Then, a three-dimensional scoring model (conceptual role, dependency intensity, and practical application) was developed. Comparative data were collected and analyzed using a structured questionnaire distributed among 100 academic and industry experts. The findings indicate that the data governance approach performs better in metrics such as structure, quality, security, and data control, whereas the data-driven governance approach excels in areas like decision analytics, data-centric mindset, experimentation culture, and advanced analytical tool adoption. Furthermore, the average overall score of data-driven governance (8.9 out of 10) was higher than that of data governance (8.0 out of 10), and the scoring pattern highlights the complementary nature of the two approaches across different organizational layers. Finally, a four-layer conceptual model—comprising infrastructure, operations, decision-making, and strategy—is proposed. This model integrates both top-down (policy-driven) and bottom-up (gradual transformation) implementation paths, facilitating the design of data-driven and intelligent organizations. The application of this model requires contextual adaptation based on each organization’s cultural and industrial environment. Future studies are recommended to empirically validate the model in real-world organizational settings.

Keywords

Main Subjects


احمدی، صدرا و توانا، محمد مهدی (۱۴۰۱). ارائه رویکرد فازی جدید برای سنجش استقرار حاکمیت داده و مدیریت عوامل مربوط به آن، چشم‌انداز مدیریت صنعتی، ۴۵: ۵۵ـ۷۲.
شرفی، علی (۱۴۰۲). حکمرانی داده، اطلاعات و دانش، تهران: انتشارات دانشگاه تهران.
شعبان‌الهی، امید؛ مرعشی‌پور، علیرضا و حسن‌زاده کریم‌آباد، علیرضا (۱۳۹۶). ارائه چارچوب حاکمیت داده‌های بزرگ در بانک مرکزی جمهوری اسلامی ایران. پژوهش‌های پولی و بانکی، شماره ۳۲.
فینی‌زاده بیدگلی، محسن؛ مظفری، افسانه و خجسته باقرزاده، حسن (۱۴۰۲). بررسی وضعیت و نتایج شکل‌گیری حکمرانی داده در ایران. کنفرانس ملی حکمرانی داده.
Refrences
Abraham, R., Schneider, J., & vom Brocke, J. (2019). Data governance: A conceptual framework, structured review, and research agenda. International Journal of Information Management, 49, 424–438.
Alation. (2025). Balance data access with Alation Data Governance.
Alhassan, I., Sammon, D., & Daly, M. (2021). Data governance activities: A comparison between theory and practice. Information Systems Management, 38(1), 2–18.
Belton, V., & Stewart, T. J. (2002). Multiple criteria decision analysis: An integrated approach. Springer Science & Business Media.
Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. (2013). Digital business strategy: Toward a next generation of insights. MIS Quarterly, 37(2), 471–482.
Chen, Y., Liu, J., & Wang, Y. (2020). How does big data analytics affect firm performance? The mediating role of data-driven decision-making capability. Technological Forecasting and Social Change, 158, 120180.
Collibra. (2025). Collibra Data Governance software.
DAMA International. (2023). Data Management Body of Knowledge (DAMA-DMBOK) Version 2. Technics Publications.
Davenport, T. H., & Harris, J. G. (2007). Competing on Analytics: The New Science of Winning. Harvard Business Press.
Data Quality Pro. (2025). 10 Reasons Why Data Quality and Data Governance Initiatives Fail.
Ghosh, R., Sharma, R., & Nair, S. (2021). Smart organizations and digital transformation: A systematic literature review. Journal of Organizational Computing and Electronic Commerce, 31(3), 206–229.
Greco, S., Ehrgott, M., & Figueira, J. R. (Eds.). (2016). Multiple criteria decision analysis. State of the art surveys (Vol. 233). Springer.
Informatica. (2025). Data Governance, Access and Privacy.
Janssen, M., van den Hoven, J., & Helbig, N. (2020). Transparency-by-design as a foundation for data governance. Government Information Quarterly, 37(1), 101378.
Julakanti, S. R., Sattiraju, N. S. K., & Julakanti, R. (2025). Data Protection through Governance Frameworks. arXiv preprint arXiv:2502.10404.
Kane, G. C., Palmer, D., Phillips, A. N., Kiron, D., & Buckley, N. (2015). Strategy, not technology, drives digital transformation. MIT Sloan Management Review and Deloitte University Press.
Khatri, V., & Brown, C. V. (2010). Designing data governance. Communications of the ACM, 53(1), 148–152.
Li, X., Cheng, Y., & Møller, C. (2024). Data governance: A critical foundation for data-driven decision-making in operations and supply chains. arXiv preprint arXiv:2409.15137.
McAfee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60–68.
Monte Carlo Data. (2024). Becoming A Data Owner: Roles, Responsibilities, And 4 Best Practices.
Mithas, S., Tafti, A., & Mitchell, W. (2013). How a firm's competitive environment and digital strategic posture influence digital business strategy. MIS Quarterly, 37(2), 511–536.
Müller, O., Junglas, I., Brocke, J. V., & Debortoli, S. (2023). Empowering decision-makers with data-driven capabilities: A research agenda for data governance and business analytics. Decision Support Systems, 165, 113880.
OneTrust. (2025). HIPAA vs. GDPR Compliance: What's the Difference?
Otto, B. (2022). How data governance enables digital transformation: A review and research agenda. Information & Management, 59(1), 103590.
Sebastian, I. M., Ross, J. W., Beath, C. M., Mocker, M., Moloney, K. G., & Fonstad, N. O. (2017). How big old companies navigate digital transformation. MIS Quarterly Executive, 16(3), 197–213.
Secoda. (2025). A Comprehensive Guide To Metadata Governance.
Shao, Z., Feng, Y., & Wang, T. (2022). How to shape organizational agility via digital transformation: The mediating role of IT capabilities and digital dynamic capability. Information & Management, 59(2), 103624.
Shao, Z., Wang, T., & Wang, Y. (2022). How data-driven culture and capabilities enable organizational agility: A dynamic capability perspective. Information & Management, 59(3), 103628.
Tallon, P. P., Ramirez, R. V., & Short, J. E. (2021). The information artifact in IT governance: Toward a theory of governance for information. Journal of Management Information Systems, 38(2), 487–515.
Talend. (2025). Talend Data Quality and Governance: Trusted Data for Everyone.
Triantaphyllou, E. (2000). Multi-criteria decision-making methods: A comparative study. Springer.
Wang, Y., & Byrd, T. A. (2022). Business analytics-enabled decision-making effectiveness: A review and research agenda. European Journal of Information Systems, 31(1), 39–66.
Wang, Y., Byers, A. H., & Otto, B. (2021). Integrating data governance and data analytics capability for business value: A dynamic capabilities perspective. Information & Management, 58(4), 103476.
Weill, P., & Ross, J. W. (2004). IT Governance: How Top Performers Manage IT Decision Rights for Superior Results. Harvard Business School Press.
Wende, K., & Otto, B. (2021). A comprehensive view on data governance: A literature review and research agenda. Journal of Enterprise Information Management, 34(6), 1619–1641.
Westerman, G., Bonnet, D., & McAfee, A. (2014). Leading digital: Turning technology into business transformation. Harvard Business Press.